geo.wikisort.org - Mountains

Search / Calendar

Santa María Volcano is a large active volcano in the western highlands of Guatemala, in the Quetzaltenango Department near the city of Quetzaltenango.

Santa María, Santiaguito
Santiaguito side cone from the summit of Santa María
Highest point
Elevation3,772 m (12,375 ft)
Coordinates14°45′20″N 91°33′06″W
Geography
Santa María, Santiaguito
Guatemala
LocationQuetzaltenango Department, Guatemala
Parent rangeSierra Madre
Geology
Mountain typeStratovolcano
Volcanic arc/beltCentral America Volcanic Arc
Last eruption2013 to present

The volcano was known as Gagxanul in the local K'iche' language, which means "Naked Volcano or Mountain", before the 16th century Spanish conquest of the region.[1][2]

The VEI-6 eruption of Santa María Volcano in 1902 was one of the three largest eruptions of the 20th century, after the 1912 Novarupta and 1991 Mount Pinatubo eruptions. It is also one of the five biggest eruptions of the past 200 (and most likely 300) years.[3]


Geological history


Santa María Volcano is part of the Sierra Madre range of volcanoes, which extends along the western edge of Guatemala, separated from the Pacific Ocean by a broad plain. The volcanoes are formed by the subduction of the Cocos Plate under the Caribbean Plate, which led to the formation of the Central America Volcanic Arc.

Eruptions at Santa María are estimated to have begun about 103 ka. Construction of the volcanic edifice occurred in four phases, from 103–72, 72, 60–46, and 35–25 ka,[4][5] building up the large cone that reaches about 1,400 metres (4,600 ft) above the plain on which the nearby city of Quetzaltenango sits. Following the cone-building eruptions, activity seems to have changed to a pattern of long periods of repose followed by the emission of small lava flows from vents on the mountain.


1902 eruption


Steam rises from Santiaguito. The area of the flank destroyed by the 1902 eruption can be clearly seen. Lahar deposits snake down river valleys to the left of the image
Steam rises from Santiaguito. The area of the flank destroyed by the 1902 eruption can be clearly seen. Lahar deposits snake down river valleys to the left of the image
Santa María, 1902 eruption
Santa María, 1902 eruption
The volcano as seen from the nearby city of Quetzaltenango
The volcano as seen from the nearby city of Quetzaltenango

The first eruption of Santa María in recorded history occurred in October 1902. Before 1902 the volcano had been dormant for at least 500 years and possibly several thousand years, but its awakening was clearly indicated by a seismic swarm in the region starting in January 1902, which included a major earthquake in April 1902. The eruption began on 24 October, and the largest explosions occurred over the following two days, ejecting an estimated 8 cubic kilometres (1.9 cu mi) of magma. The eruption was one of the largest of the 20th century, only slightly less in magnitude to that of Mount Pinatubo in 1991. The eruption had a Volcanic Explosivity Index (VEI) of 6, thus being 'Colossal'.[6]

The pumice formed in the climactic eruption fell over an area of about 273,000 square kilometres (105,000 sq mi), and volcanic ash as far away as San Francisco, California, 4,000 kilometres (2,500 mi) away. The eruption occurred out of a vent on the southwest side of the volcano, leaving a crater about 1 kilometre (0.6 mi) in diameter and about 300 metres (980 ft) deep, stretching from just below the summit to an elevation of about 2,300 metres (7,500 ft). The first evidence of the eruption was a sprinkling of sand on Quezaltenango. The wind then changed from the south to the east and ashes began to fall at Helvetia, a coffee plantation 10 kilometres (6 mi) southwest.[7]

Because of the lack[6] of recorded eruptive activity at Santa María, local people did not recognise the preceding seismicity as warning signs of an eruption. Estimates are that 6,000 people died as a result of the eruption.[8]

In the middle of the disaster, Quetzaltenango regional authorities had to take charge, as the central government was focused on the celebration of the "Fiestas Minervalias", the largest propaganda festival of president Manuel Estrada Cabrera' regime; furthermore, the central government was so focused on the festival that it tried to minimize the impact of the eruption and went as far as tell the citizens that it was not in Guatemalan soil, but in México.[9] Furthermore, the official government response was to tell Quetzaltenango authorities that there were no funds for the recovery, as those were already spent to help after the April 1902 earthquake.[10] Under such circumstances, Quetzaltenango regional authorities declared that all the West zone agricultural harvest was ruined, and forecasted famine due to food shortages; likewise, cattle were dying and there were meat shortages as well. They were allowed by the central government to import flour free of taxes for the next few months.[11]

For the native people the eruption consequences were catastrophic: they not only lost relatives, friends, homes and harvest, but they were also forced to work free of charge in the recovery while "criollo" landlords were compensated for the loss with lands that were confiscated from native communities in San Miguel Uspantán Quiché Department, Panam in Suchitepéquez Department and in Sololá Department.[11]


1902 eruption sequence of events





Santiaguito


Santiaguito, 2016 eruption[12]
Santiaguito, 2016 eruption[12]

The 1902 eruption was followed by 20 years of dormancy. New eruptions began in 1922, with the extrusion of a lava dome complex in the crater left by the 1902 eruption. The lava dome complex, named Santiaguito, is still active today with over 1 km3 of lava erupted so far. The lava dome complex has four main domes: El Caliente, La Mitad, El Monje and El Brujo. The currently active vent is El Caliente.[13]

The dome growth has been both endogenous and exogenous. The former implies dome interior expansion to accommodate new lava and the latter refers to superficial piling up of lava. Activity has been concentrated at several different vents, and Santiaguito now has the appearance of several overlapping domes.[14] At the beginning of dome growth the composition was dacite, identical to the composition of the Santa Maria eruption. By 1990 the composition had shifted to a less evolved andesite. It has been proposed that this is due to a stratified magma chamber beneath the volcano.[15]

The early (pre-1990) exogenous volcanism has consisted of lava spines and lava flows. Nowadays, only lava flows are erupted. All the volcanic activity is cyclic with 10+ year cyclic timescales between periods of high volcanism with high extrusion rates and low volcanism with low extrusion rates.[16] The latest with high extrusion rate was in 2011–2015 with the emplacement of more than four new lava flows.[14] Frequent small eruptions and pyroclastic flows have been ongoing throughout dome growth.

Although most of Santiaguito's eruptive activity has been relatively gentle, occasional larger explosions have occurred. In 1929 part of the dome collapsed, generating pyroclastic flows which killed anywhere from several hundred up to 5,000 people.[17] Occasional rockfalls have generated smaller pyroclastic flows, and vertical eruptions of ash to heights of a few kilometres above the dome are common.[18] Santiaguito is now a tourist attraction, as minor eruptions occur with regularity and can be observed by visitors from the summit of Santa Maria.


Volcanic hazards at Santa María


A hot lahar rushes down a river valley near El Palmar in 1989
A hot lahar rushes down a river valley near El Palmar in 1989

The areas to the south of Santa María are considerably affected by volcanic activity at Santiaguito. Currently, the most common volcanic hazards at Santa María are lahars, which frequently occur in the rainy season due to heavy rainfall on loose volcanic deposits. Lahars are particularly large and frequent during periods of high volcanism at Santiaguito. The town of El Palmar, 10 kilometres (6 mi) from Santiaguito, has been destroyed twice by lahars from Santiaguito forcing the town to be moved to the present Nuevo El Palmar, and infrastructure such as roads and bridges have been repeatedly damaged. Lahar deposits from Santiaguito have affected rivers all the way downstream to the Pacific Ocean.[19]

Near constant lava flows occur from Santiaguito, and can reach up to 4 km from the vent. Lava flow activity occurs in cycles, with the longest lava flows occurring during times of high volcanic activity. Much shorter lava flows occur during the longer periods of low volcanic activity. These lava flows flow only a short distance from the vent before collapsing.[14] The magma at Santiaguito is rich in silica and is thus highly viscous. The lava flows are slow moving and mostly cause property damage, although in the past catastrophic pyroclastic flows have been triggered from lava flows, which have extended several kilometers towards the west.[20][21]

One hazard which could be devastating is the collapse of Santa María itself. The 1902 crater has left the southern flank of the mountain above Santiaguito highly over-steepened, and a large earthquake or eruption from Santiaguito could trigger a huge landslide, which might cover up to 100 square kilometres (39 sq mi). However, this is thought to be unlikely in the short term.

In light of the threat it poses to nearby populations, Santa María has been designated a Decade Volcano, identifying it as a target for particular study by volcanologists to mitigate any future natural disasters at the volcano.


See also



References


Notes
  1. Recinos 1952, 1986, p.69.
  2. "Santa María Volcano, Guatemala". Michigan Tech. 3 May 2022.{{cite web}}: CS1 maint: url-status (link)
  3. "Large Holocene Eruptions". Global Volcanism Program. Smithsonian Institution. Retrieved 12 October 2008.
  4. Escobar-Wolf, Rudiger (2010). "40Ar/39Ar and paleomagnetic constraints on the evolution of Volcán de Santa María, Guatemala". Bulletin of Volcanology. 122 (5): 57–771.
  5. Singer, Brad (2011). "Tracking open-system differentiation during growth of Santa María Volcano, Guatemala". Journal of Petrology. 52 (12): 2335–2363. Bibcode:2011JPet...52.2335S. doi:10.1093/petrology/egr047.
  6. "Santa María". Global volcanism program. Archived from the original on August 20, 2007. Retrieved 7 October 2015.
  7. Anderson, Tempest (1908). The Volcanoes of Guatemala. London: The Royal Geographical Society. p. 478.
  8. "What is the largest eruption ever?". OSU. Archived from the original on 17 November 2017. Retrieved 5 June 2018.
  9. Arévalo Martínez 1945, p. 64.
  10. Arévalo Martínez 1945, p. 67.
  11. Aragón 2013.
  12. "Powerful eruption at Santa Maria (Santiaguito) ejects ash up to 4.5 km, Guatemala".
  13. Jeannie A.J. Scott (2013), "The Santiaguito volcanic dome complex, Guatemala," https://vhub.org/resources/2268
  14. Rhodes, Emma; Kennedy, Ben M.; Lavallée, Yan; Hornby, Adrian; Edwards, Matt; Chigna, Gustavo (2018). "Textural Insights Into the Evolving Lava Dome Cycles at Santiaguito Lava Dome, Guatemala". Frontiers in Earth Science. 6: 30. Bibcode:2018FrEaS...6...30R. doi:10.3389/feart.2018.00030. ISSN 2296-6463.
  15. Scott, Jeannie A.J.; Pyle, David M.; Mather, Tamsin A.; Rose, William I. (Feb 2013). "Geochemistry and evolution of the Santiaguito volcanic dome complex, Guatemala". Journal of Volcanology and Geothermal Research. 252: 92–107. Bibcode:2013JVGR..252...92S. doi:10.1016/j.jvolgeores.2012.11.011. ISSN 0377-0273.
  16. Harris, A. J. L., Rose, W. I., and Flynn, L. P. (2003). "Temporal trends in lava dome extrusion at Santiaguito 1922–2000". Bull. Volcanol. 65, 77–89. doi:10.1007/s00445-002-0243-0
  17. Sapper & Termer, 1930
  18. Johnson, Jeffrey B.; Harris, Andrew J. L.; Sahetapy-Engel, Steve T. M.; Wolf, Rudiger; Rose, William I. (Mar 2004). "Explosion dynamics of pyroclastic eruptions at Santiaguito Volcano". Geophysical Research Letters. 31 (6): n/a. Bibcode:2004GeoRL..31.6610J. CiteSeerX 10.1.1.500.3171. doi:10.1029/2003gl019079. ISSN 0094-8276. S2CID 14592231.
  19. Harris, Andrew J.L.; Vallance, James W.; Kimberly, Paul; Rose, William I.; Matías, Otoniel; Bunzendahl, Elly; Flynn, Luke P.; Garbeil, Harold (2006). Special Paper 412: Volcanic Hazards in Central America. Geological Society of America. pp. 85–104. doi:10.1130/2006.2412(05). ISBN 978-0813724126.
  20. Rose, W. I. (1973). Nuée ardente from Santiaguito Volcano April 1973. Bull. Volcanol. 37, 365–371.
  21. Rose, W. I.; Pearson, T.; Bonis, S. (1976-03-01). "Nuée ardente eruption from the foot of a dacite lava flow, Santiaguito volcano, Guatemala". Bulletin Volcanologique. 40 (1): 23–38. Bibcode:1976BVol...40...23R. doi:10.1007/BF02599827. ISSN 0366-483X. S2CID 129863138.
Bibliography



На других языках


[de] Santa María

Santa María ist ein 3772 m hoher aktiver Vulkan in Guatemala in der Nähe der Stadt Quetzaltenango. Er ist der gewaltigste in einer Kette von Stratovulkanen nahe der pazifischen Küste von Guatemala.
- [en] Santa María (volcano)

[es] Volcán Santa María

El volcán Santa María, es un gran volcán activo en la zona montañosa del occidente de Guatemala, cerca de la ciudad de Quetzaltenango. Su erupción en 1902 fue una de las tres más grandes erupciones del siglo XX y la tercera erupción más grande de ese año, después del monte Pelée en Martinica y La Soufrière en San Vicente. Fue también una de las cinco más grandes erupciones de los últimos 200 años (y probablemente 300).[1]

[fr] Santa María (volcan du Guatemala)

Le Santa María, également appelé par métonymie Santiaguito du nom de son dôme de lave ou encore Gagxanul[1], est un volcan du Guatemala[2]. Il est en éruption depuis 1922 et produit fréquemment des nuées ardentes et des lahars qui ont entraîné des dégâts matériels et des morts parmi la population qui vit en contrebas[3].

[it] Santa María (vulcano)

Santa María (3.772 m s.l.m.) è un stratovulcano attivo, sito negli altopiani occidentali del Guatemala, vicino alla città di Quetzaltenango.

[ru] Санта-Мария (вулкан)

Санта-Мария — большой действующий стратовулкан. Находится в западной Гватемале, недалеко от города Кесальтенанго. Высота над уровнем моря — 3772 метра. Первые извержения начались приблизительно 30 тысяч лет назад.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.org - проект по пересортировке и дополнению контента Википедии