The Hajar Mountains (Arabic: جِبَال ٱلْحَجَر, romanized:Jibāl al-Ḥajar, The Rocky Mountains[3][4] or The Stone Mountains) in northeastern Oman and also the eastern United Arab Emirates are the highest mountain range in the eastern Arabian peninsula. Also known as "Oman Mountains",[1][2] they separate the low coastal plain of Oman from the high desert plateau, and lie 50–100km (31–62mi) inland from the Gulf of Oman.
Al (اَلْ) means "the", and Ḥajar (حَجَر) means "stone" or "rock". So al-Ḥajar (اَلْحَجَر) is named as "the stone" or "the rock".
Geology
See also: Geology of Oman and Geology of the United Arab Emirates
Topographic map of the Hajar Mountains with tectonic and geological localities
Orography and tectonic setting
The Hajar Mountains extend for 700 kilometres (430 miles) through the UAE and Oman.[5] They are located on the north-east corner of the Arabian Plate, reaching from the Musandam Peninsula through to the east coast of Oman. The range is about 100km (62mi) wide, with Jabal Shams being the highest peak at 3,009m (9,872ft) in the central region of the mountains.[6][7]
Currently, the Arabian Plate is moving north relative to the Eurasian Plate at 2–3cm (0.79–1.18in) per year.[8][9] Continental collision is occurring at the Zagros fold and thrust belt west of the Musandam Peninsula.[10][11] This collisional plate boundary transitions into a subduction zone, towards the east. Here, oceanic crust of the Arabian Plate is subducted northwards beneath Eurasia, called the Makran subduction zone.[12]
Lithology
The geology of the Hajar can be grouped into four major tectonostratigraphic groups. Group one are the pre-Permian basement rocks, a sedimentary sequence of clastics, carbonates and evaporites. Group two are a middle Permian to Late Cretaceous sequence of continental shelf carbonates, which were deposited unconformably above the basement. Group three are a series of nappes (allochthonous rocks) that were transported from the northeast to the southwest horizontally for more than 300km (190mi). This was a major tectonic event during the late Cretaceous. This process is called obduction, where Permian to middle Cretaceous continental slope-rise (shallow to deep marine) sedimentary rocks and late Cretaceous oceanic crust (Semail ophiolite) were thrust (obducted) above the rocks from groups one and two. Lastly, group four are late Cretaceous to Miocene shallow marine and terrestrial sedimentary rocks that were deposited on top of all three previous groups.[13][14][15][16][17][18][19]
Structures
The high topography is around two major culminations: Jabal Akhdar and Saih Hatat, which are large scale anticlines.[20] The Saih Hatat culmination contains eclogite in the northeast at As Sifah.[21] These rocks were subducted to about 80km (50mi) depth into the mantle, and then exhumed back to the surface.[18] This exhumation event created possibly the largest megasheath fold on Earth, the Wadi Mayh megasheath fold.[22] The common view is that these eclogites were originally basic volcanic rocks within the leading edge of the continental crust of the Arabian Plate. This leading edge was then subducted by a NE-dipping subduction zone.[23][24] However, some geologists have interpreted that these eclogites were subducted through a SW-dipping subduction zone.[25]
The two culminations are separated by the Semail Gap. This is a prominent linear structure, trending NNE—SSW. However, it is still debated as to what this structure is. Different geologists claim that it is a left-lateral (sinistral) strike-slip fault,[26] a normal fault,[20] a lateral ramp,[27] a monocline due to a blind thrust,[14] or a fault with multiple phases of deformation.[28]
Modern topography
The late Cretaceous obduction event created the proto-Hajar Mountains. However, this topography subsided and shallow marine sedimentation covered the region, beginning in the Paleocene.[17][29] Paleocene to Eocene sedimentary rocks are found at 2,200m (7,200ft) above sea level within the Hajar,[27] and are folded. This indicates that the present day topography formed after the late Eocene. The exact timing is debated, and various interpretations indicate the topography formed anywhere between the late Eocene through to the Miocene.[20][29][27][30][31]
The driving forces that formed the Hajar is also debated. Many geologists relate the Zagros Collision as the reason for the uplift forming the mountains,[17][29][32][33] as currently the Musandam Peninsula (northwest corner of the mountain range) is uplifting due to this collision. However, Jabal Shams, the highest peak of the central mountains is over 300km (190mi) away from this zone. In addition, there is no major seismicity within the central mountains,[34] indicating that the mountains are not currently deforming, even though the Zagros collision is.[27] This indicates that the uplift that created the present day topography occurred in the past, possibly before the initiation of the Zagros collision, by a mechanism that is not fully understood.
Geoconservation
Pillow basalts at Wadi Jizz, which is part of the Semail Ophiolite sequence. These were named the Geotimes Pillow Lavas after a photo of them was published on the cover of the Geotimes magazine in 1975.
Oman's geological record is extremely valuable to geologists, and needs to be preserved.[35] It contains the most complete ophiolite on Earth, of which it is most famous for among geologists. The ophiolite sequence has spectacular pillow basalt (Geotimes pillow lava), as well as exposures of the fossil crust-mantle boundary (moho). Generally, ophiolites are obducted prior to continental collision, which highly deforms the structure of the original oceanic crust. However, because continental collision has not occurred in the Hajar, the Semail ophiolite is still intact. Oman also has one of the best exposed mega-sheath folds ever discovered, the Wadi Mayh sheath fold.[22] Additionally, the relatively small outcrop of eclogite is important. Eclogite is rare on the Earths surface, as it is a rock that forms at high pressures deep within the crust or mantle. Geologists can learn about what is occurring in the Earths interior and tectonic processes from these rocks. There are also various fossil localities in Oman that need to be protected. There is concern in the geological community that with the development of infrastructure these rocks that contain a great deal of information will be excavated and destroyed.[35]
Geography
See also: Climate of Oman, Climate of the United Arab Emirates, Geography of Oman, and Geography of the United Arab Emirates
Central Hajar
Jabal Shams, which has the highest peak in Oman
The central section of the Hajar is the highest and wildest terrain in the country. Jabal Shams is the highest of the range,[36] followed by Jebel Akhdar. The latter[37] and the smaller Jebel Nakhl range are bounded on the east by the low Sama'il Valley (which leads northeast to Muscat).[38]
Eastern Hajar
East of Samail are the Eastern Hajar (Arabic: ٱلْحَجَر ٱلشَّرْقِي, romanized:Al-Ḥajar Ash-Sharqī), which run east (much closer to the coast) to the port city of Sur,[39] almost at the easternmost point of Oman.
Western Hajar
Outside Al-Hoota near Nizwa, Oman
The mountains to the west of Sama'il Valley, particularly those in Musandam Peninsula and the UAE,[40] are known as the Western Hajar (Arabic: ٱلْحَجَر ٱلْغَرْبِي, romanized:Al-Ḥajar Al-Gharbī),[41] also known as the "Oman proper". Since Jabal Akhdar and mountains in its vicinity are west of the valley, they may be regarded as Western Hajar.[1][40]
Outlier(s)
In the region of Tawam,[42] which includes the adjacent settlements of Al-Buraimi and Al Ain on the border of Oman and the UAE Emirate of Abu Dhabi, lies Jebel Hafeet (1,100–1,400m (3,600–4,600ft)),[43][44][45][46] which can be considered an outlier of the Hajar. Due to its proximity to the main Hajar range,[44] it may be treated as being part of the range, sensu lato.[47] This mountain has ridges which stretch northwards to the city of Al Ain.[48][49][50][51]
Ru'us al-Jibal
Main article: Musandam Peninsula
Ru'us al-Jibal in the Musandam Governorate of Oman, north of the UAE city and emirate of Ras Al Khaimah
The northernmost mountains of the Hajar range are found on the Musandam Peninsula. For this reason, the phrase Ru'us al-Jibal ("Heads of the Mountains") is applied to them, or the peninsula itself. Despite being physically part of the western Hajar, they differ in geology and hydrology to the rest of the range.[1][40] The highest point in the UAE is located at Jebel Jais near Ras Al Khaimah, which measures 1,934m (6,345ft) from sea level,[43] but since the summit is on the Omani side, Jabal Yibir, measuring over 1,500m (0.93mi), has the highest peak in the UAE.[52][53]
Shumayliyyah
Mountains in the UAE Emirate of Fujairah
The mountains bordering the Shamailiyyah (شَمَيْلِيَّة) coast on the Gulf of Oman, forming parts of the northern UAE Emirates of Sharjah, Ras Al-Khaimah and Fujairah,[40] may also be called the Shumayliyyah (شُمَيْلِيَّة).[54][55] In this region is Jebel Al-Ḥeben (جَبَل ٱلْحبن; 25°7′33″N56°9′33″E).[56][57]
Flora and fauna
See also: Al Hajar montane woodlands, Wildlife of Oman, and Wildlife of the United Arab Emirates
Date palms and other trees amongst the Eastern Hajar, near the east coast of Oman
The mountains are rich in plant life compared to most of Arabia, including a number of endemic species. The vegetation changes with altitude, the mountains are covered with shrubland at lower elevations, growing richer and then becoming woodland, including wild olive and fig trees between 3,630 and 8,250ft (1,110 and 2,510 metres), and then higher still there are junipers. Fruit trees such as pomegranate and apricot are grown in the cooler valleys and in places there are rocky outcrops with little vegetation. The flora shows similarities with mountain areas of nearby Iran, as well as with areas along the Red Sea in the Horn of Africa. For example, the tree Ceratonia oreothauma is found here and also in Somalia.[58]
A number of birds are found in the mountains including Egyptian and lappet-faced vultures (Torgos tracheliotus). Mammals include mountain gazelles (Gazella gazella) and the Arabian tahr (Arabitragus jayakari).[59][60] Other endemic species include a number of geckos and lizards: Asaccus montanus, Asaccus platyrhynchus and a subspecies of Wadi Kharrar rock gecko (Pristurus gallagheri) are found only in Oman while Musandam leaf-toed gecko (Asaccus caudivolvulus), Gallagher's leaf-toed gecko (Asaccus gallagheri), Oman rock gecko (Pristurus celerrimus), Jayakar lizard (Omanosaura jayakari) and Oman blue-tailed lizard (Omanosaura cyanura) are found only in the Hajar. The endangered Arabian leopard (Panthera pardus nimr) had been recorded here,[54] particularly in the area of Khasab in northern part of the Musandam.[61][62]
Like the Ru'us al-Jibal,[63] the area of Jebel Hafeet is noted for hosting rare flora and fauna.[64][65] For example, in February 2019, an Arabian caracal was sighted here,[66][67][68] and in March, a Blanford's fox,[69][70] which has also been reported in the mountains of Ras Al-Khaimah.[71]
Threats and preservation
The Hajar are extensively grazed by domestic goats, camels and donkeys and the landscape has been cleared in parts for urban areas and for mining, which has damaged both vegetation and water supplies and uprooted traditional rural land management behaviours. Poaching of wildlife is another issue. The Oman government has created the Wadi Sareen Reserve and an area of Jebel Qahwan-Jebal Sebtah in the Eastern Hajar, for the protection of Arabian tahr and mountain gazelle. For visitors, there is a road into the mountains from the town of Birkat al-Mawz (on the road to Nizwa from Muscat) and a walking route through Wadi al-Muaydin to the Saiq Plateau.[citation needed]
Trekking and hiking
There are 11 marked trails/routes of varying intensity (between Grade 1 to 3) and duration (between 1.5 hours to 18 hours) published by Ministry of Tourism, Oman along the Hajar range.[72] Some areas are inaccessible, and requires special equipment, as shown in a Steve Backshall TV documentary.[73]
Allen, Calvin H. Jr. (2016-02-05). "1: Land and People". Oman: the Modernization of the Sultanate. Abingdon, New York: Routledge. pp.1–8. ISBN978-1-3172-9164-0.
Al-Yahyai, Sultan; Charabi, Yassine; Al-Sarmi, Said; Al-Maskari, Juma (2017-05-09). "3: Scenarios Based Climate Projection for Oman's Water Resources". In Abdalla, Omar; Kacimov, Anvar; Chen, Mingjie; Al-Maktoumi, Ali; Al-Hosni, Talal; Clark, Ian (eds.). Water Resources in Arid Areas: The Way Forward. Springer. p.49. ISBN978-3-3195-1856-5.
Searle, M. P.; Cooper, D. J. W. (1986). "Structure of the Hawasina Window culmination, central Oman Mountains". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 77 (2): 143–156. doi:10.1017/S0263593300010798. ISSN1473-7116.
Kusky, Timothy; Robinson, Cordula; El-Baz, Farouk (September 2005). "Tertiary–Quaternary faulting and uplift in the northern Oman Hajar Mountains". Journal of the Geological Society. 162 (5): 871–888. Bibcode:2005JGSoc.162..871K. doi:10.1144/0016-764904-122. ISSN0016-7649. S2CID59467623.
McQuarrie, Nadine; Hinsbergen, Douwe J. J. van (2013-03-01). "Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction". Geology. 41 (3): 315–318. Bibcode:2013Geo....41..315M. doi:10.1130/G33591.1. ISSN0091-7613. S2CID129286006.
White, Robert S. (1982). "Deformation of the Makran accretionary sediment prism in the Gulf of Oman (north-west Indian Ocean)". Geological Society, London, Special Publications. 10 (1): 357–372. Bibcode:1982GSLSP..10..357W. doi:10.1144/gsl.sp.1982.010.01.24. ISSN0305-8719. S2CID128499615.
Robertson, A. H. F.; Searle, M. P. (1990). "The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies". Geological Society, London, Special Publications. 49 (1): 3–25. Bibcode:1990GSLSP..49....3R. doi:10.1144/GSL.SP.1992.049.01.02. ISSN0305-8719. S2CID140152540.
Mann, A.; Hanna, S. S.; Nolan, S. C.; Mann, A.; Hanna, S. S. (1990). "The post-Campanian tectonic evolution of the Central Oman Mountains: Tertiary extension of the Eastern Arabian Margin". Geological Society, London, Special Publications. 49 (1): 549–563. Bibcode:1990GSLSP..49..549M. doi:10.1144/GSL.SP.1992.049.01.33. ISSN0305-8719. S2CID130934776.
Warren, Clare J.; Parrish, Randall R.; Waters, David J.; Searle, Michael P. (November 2005). "Dating the geologic history of Oman's Semail ophiolite: insights from U-Pb geochronology". Contributions to Mineralogy and Petrology. 150 (4): 403–422. Bibcode:2005CoMP..150..403W. doi:10.1007/s00410-005-0028-5. ISSN0010-7999. S2CID128424505.
Rioux, Matthew; Bowring, Samuel; Kelemen, Peter; Gordon, Stacia; Miller, Robert; Dudás, Frank (May 2013). "Tectonic development of the Samail ophiolite: High-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement: TECTONIC HISTORY OF THE SAMAIL OPHIOLITE". Journal of Geophysical Research: Solid Earth. 118 (5): 2085–2101. doi:10.1002/jgrb.50139. hdl:1721.1/85188. S2CID7801342.
Warren, C.J.; Miller, J.McL. (March 2007). "Structural and stratigraphic controls on the origin and tectonic history of a subducted continental margin, Oman". Journal of Structural Geology. 29 (3): 541–558. Bibcode:2007JSG....29..541W. doi:10.1016/j.jsg.2006.10.006.
Searle, M. P; Warren, C. J; Waters, D. J; Parrish, R. R (2004-03-01). "Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains". Journal of Structural Geology. 26 (3): 451–473. Bibcode:2004JSG....26..451S. doi:10.1016/j.jsg.2003.08.005. ISSN0191-8141.
Searle, Michael P.; Cox, Jon (May 2002). "Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains". Geological Magazine. 139 (3): 241–255. Bibcode:2002GeoM..139..241S. doi:10.1017/S0016756802006532. ISSN1469-5081. S2CID129906501.
Gray, D. R.; Gregory, R. T. (2003). "Ophiolite obduction and the Samail Ophiolite: the behaviour of the underlying margin". Geological Society, London, Special Publications. 218 (1): 449–465. Bibcode:2003GSLSP.218..449G. doi:10.1144/gsl.sp.2003.218.01.23. ISSN0305-8719. S2CID129638547.
Le Métour, J.; Rabu, D.; Tegyey, M.; Béchennec, F.; Beurrier, M.; Villey, M. (1990). "Subduction and obduction: two stages in the Eo-Alpine tectonometamorphic evolution of the Oman Mountains". Geological Society, London, Special Publications. 49 (1): 327–339. Bibcode:1990GSLSP..49..327L. doi:10.1144/gsl.sp.1992.049.01.20. ISSN0305-8719. S2CID129165769.
Hansman, Reuben J.; Ring, Uwe; Thomson, Stuart N.; Brok, Bas den; Stübner, Konstanze (2017). "Late Eocene Uplift of the Al Hajar Mountains, Oman, Supported by Stratigraphy and Low-Temperature Thermochronology". Tectonics. 36 (12): 3081–3109. Bibcode:2017Tecto..36.3081H. doi:10.1002/2017TC004672. hdl:10150/627072. ISSN1944-9194. S2CID133704321.
Scharf, A.; Mattern, F.; Moraetis, D.; Callegari, I.; Weidle, C. (2019). "Postobductional Kinematic Evolution and Geomorphology of a Major Regional Structure—The Semail Gap Fault Zone (Oman Mountains)". Tectonics. 38 (8): 2756–2778. Bibcode:2019Tecto..38.2756S. doi:10.1029/2019TC005588. ISSN1944-9194. S2CID200033780.
Hansman, Reuben J.; Albert, Richard; Gerdes, Axel; Ring, Uwe (2018-03-01). "Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite". Geology. 46 (3): 207–210. Bibcode:2018Geo....46..207H. doi:10.1130/G39822.1. ISSN0091-7613. S2CID134043082.
Poupeau, Gérard; Saddiqi, Omar; Michard, André; Goffé, Bruno; Oberhänsli, Roland (1998-12-01). "Late thermal evolution of the Oman Mountains subophiolitic windows: Apatite fission-track thermochronology". Geology. 26 (12): 1139–1142. Bibcode:1998Geo....26.1139P. doi:10.1130/0091-7613(1998)026<1139:LTEOTO>2.3.CO;2. ISSN0091-7613.
Ali, M. Y.; Sirat, M.; Small, J. (2009). "Integrated Gravity and Seismic Investigation Over the Jabal Hafit Structure: Implications for Basement Configuration of the Frontal Fold-and-Thrust Belt of the Northern Oman Mountains". Journal of Petroleum Geology. 32 (1): 21–37. doi:10.1111/j.1747-5457.2009.00433.x. ISSN1747-5457. S2CID128841976.
El-Hussain, I.; Deif, A.; Al-Jabri, K.; Toksoz, N.; El-Hady, S.; Al-Hashmi, S.; Al-Toubi, K.; Al-Shijbi, Y.; Al-Saifi, M.; Kuleli, S. (2012-10-01). "Probabilistic seismic hazard maps for the sultanate of Oman". Natural Hazards. 64 (1): 173–210. doi:10.1007/s11069-012-0232-3. hdl:1721.1/106473. ISSN1573-0840. S2CID62898298.
Searle, Michael P. (2014). "Preserving Oman's geological heritage: proposal for establishment of World Heritage Sites, National GeoParks and Sites of Special Scientific Interest (SSSI)". Geological Society, London, Special Publications. 392 (1): 9–44. Bibcode:2014GSLSP.392....9S. doi:10.1144/sp392.2. ISSN0305-8719. S2CID129129788.
Cullen, Katherine E.; Kusky, Timothy M. (2010). "Arabian geology". Encyclopedia of Earth and Space Science. New York City: Infobase Publishing. pp.26–38. ISBN978-1-4381-2859-7.
"Jebel Jais". Jebel Jais Ras Al Khaimah. Retrieved 5 December 2017.
Gardner, Andrew Somerville (January 2004). "The reptiles of Jebel Hafeet". ADCO and Emirates Natural History Group: 149–168. Retrieved 2019-01-14.{{cite journal}}: Cite journal requires |journal= (help)
Hillcoat, D., G. Lewis, and B. Verdcourt. "A New Species of Ceratonia (Leguminosae-Caesalpinioideae) from Arabia and the Somali Republic." Kew Bulletin 35, no. 2 (1980): 261-71. Accessed December 4, 2020. doi:10.2307/4114570.
Nader, I. A. (1989). "Rare and endangered mammals of Saudi Arabia"(PDF). In Abu-Zinada, A. H.; Goriup, P. D.; Nader, L. A (eds.). Wildlife conservation and development in Saudi Arabia. National Commission for Wildlife Conservation and Development Publishing. Riyadh. pp.226–228.
Harrison, D. L.; Bates, P. J. J. (1991). The mammals of Arabia(PDF). Vol.354. Sevenoaks, UK: Harrison Zoological Museum. pp.167–170.
Simó-Riudalbas, M.; Metallinou, M.; De Pous, P.; Els, J.; Jayasinghe, S.; Péntek-Zakar, E.; Wilms, Thomas; Al-Saadi, Saleh; Carranza, Salvador (2017-08-02), "Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae) from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach", PLOS One, 12 (8): e0180397, Bibcode:2017PLoSO..1280397S, doi:10.1371/journal.pone.0180397, PMC5540286, PMID28767644, e0180397
Gardner (1994), "A new species of Asaccus (Gekkonidae) from the mountains of northern Oman", Journal of Herpetology, 28 (2): 141–145, doi:10.2307/1564612, JSTOR1564612
Note: Mountains are sorted in alphabetical order, unless where it concerns ranges. The highest confirmed mountains in each country are indicated with 'HP', and those with the highest peak are indicated with 'HP', bearing in mind that in the UAE, the highest mountain and the mountain with the highest peak are different. Outcrops are indicated with 'OC', and outliers with 'OL', and anticlines with 'AC'. Volcanoes are indicated with 'V', volcanic craters with 'VC', lava fields with 'LF', and volcanic fields with 'VF'.
Other notes:
Shared with the UAE
Also regarded as being of the Western Hajar
Also regarded as being of the Western Hajar
Shared with the UAE
Shared with the UAE
Sensu lato, shared with Yemen
Shared with Yemen
Sensu lato
Sensu lato
Shared with Oman
Shared with Oman
Highest mountain in the UAE, but the peak is in Oman
Due to the peak of Jebel Jais being in Oman, this mountain has the highest confirmed peak in the UAE
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии